Bayesian Optimization for Contextual Policy Search*
نویسندگان
چکیده
Contextual policy search allows adapting robotic movement primitives to different situations. For instance, a locomotion primitive might be adapted to different terrain inclinations or desired walking speeds. Such an adaptation is often achievable by modifying a relatively small number of hyperparameters; however, learning when performed on an actual robotic system is typically restricted to a relatively small number of trials. In black-box optimization, Bayesian optimization is a popular global search approach for addressing such problems with low-dimensional search space but expensive cost function. We present an extension of Bayesian optimization to contextual policy search. Preliminary results suggest that Bayesian optimization outperforms local search approaches on low-dimensional contextual policy search problems.
منابع مشابه
Active Contextual Entropy Search
Contextual policy search allows adapting robotic movement primitives to different situations. For instance, a locomotion primitive might be adapted to different terrain inclinations or desired walking speeds. Such an adaptation is often achievable by modifying a small number of hyperparameters. However, learning, when performed on real robotic systems, is typically restricted to a small number ...
متن کاملFactored Contextual Policy Search with Bayesian Optimization
Scarce data is a major challenge to scaling robot learning to truly complex tasks, as we need to generalize locally learned policies over different "contexts". Bayesian optimization approaches to contextual policy search (CPS) offer data-efficient policy learning that generalize over a context space. We propose to improve dataefficiency by factoring typically considered contexts into two compon...
متن کاملVariational Bayesian Optimization for Runtime Risk-Sensitive Control
We present a new Bayesian policy search algorithm suitable for problems with policy-dependent cost variance, a property present in many robot control tasks. We extend recent work on variational heteroscedastic Gaussian processes to the optimization case to achieve efficient minimization of very noisy cost signals. In contrast to most policy search algorithms, our method explicitly models the co...
متن کاملPolicy Search in Continuous Action Domains: an Overview
Continuous action policy search, the search for efficient policies in continuous control tasks, is currently the focus of intensive research driven both by the recent success of deep reinforcement learning algorithms and by the emergence of competitors based on evolutionary algorithms. In this paper, we present a broad survey of policy search methods, incorporating into a common big picture the...
متن کاملBayesian Policy Search for Multi-Agent Role Discovery
Bayesian inference is an appealing approach for leveraging prior knowledge in reinforcement learning (RL). In this paper we describe an algorithm for discovering different classes of roles for agents via Bayesian inference. In particular, we develop a Bayesian policy search approach for Multi-Agent RL (MARL), which is model-free and allows for priors on policy parameters. We present a novel opt...
متن کامل